loading#
Source code: armscan_env/volumes/loading.py
- class RegisteredLabelmap(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
-
- get_optimal_action() ManipulatorAction [source]#
- classmethod load_all_cropped_labelmaps(normalize_spacing: bool = True) list[ImageVolume] [source]#
- classmethod load_all_labelmaps(normalize_spacing: bool = True) list[ImageVolume] [source]#
- load_cropped_labelmap() ImageVolume [source]#
- load_labelmap() ImageVolume [source]#
- v1 = 1#
- v11 = 11#
- v13 = 13#
- v17 = 17#
- v18 = 18#
- v2 = 2#
- v35 = 35#
- v42 = 42#
- load_sitk_volumes(normalize: bool = True, cropped: bool = False) list[ImageVolume] [source]#
Load a SimpleITK volume from a file.
- Parameters:
normalize -- whether to normalize the volumes to a single spacing
cropped -- whether to load the cropped volumes for simplified experiment
- Returns:
the loaded volume
- normalize_sitk_volumes_to_highest_spacing(volumes: list[ImageVolume]) list[ImageVolume] [source]#
Resize a SimpleITK volume to a normalized spacing, and interpolate to get right amount of voxels. Have a look at [this](https://stackoverflow.com/questions/48065117/simpleitk-resize-images) link to see potential problems.
- Parameters:
volumes -- the volumes to resize
n_spacing -- the normalized spacing to set
- Returns:
the resized volume