loading#
Source code: armscan_env/volumes/loading.py
- class RegisteredLabelmap(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
- 
- get_optimal_action() ManipulatorAction[source]#
 - classmethod load_all_cropped_labelmaps(normalize_spacing: bool = True) list[ImageVolume][source]#
 - classmethod load_all_labelmaps(normalize_spacing: bool = True) list[ImageVolume][source]#
 - load_cropped_labelmap() ImageVolume[source]#
 - load_labelmap() ImageVolume[source]#
 - v1 = 1#
 - v11 = 11#
 - v13 = 13#
 - v17 = 17#
 - v18 = 18#
 - v2 = 2#
 - v35 = 35#
 - v42 = 42#
 
- load_sitk_volumes(normalize: bool = True, cropped: bool = False) list[ImageVolume][source]#
- Load a SimpleITK volume from a file. - Parameters:
- normalize -- whether to normalize the volumes to a single spacing 
- cropped -- whether to load the cropped volumes for simplified experiment 
 
- Returns:
- the loaded volume 
 
- normalize_sitk_volumes_to_highest_spacing(volumes: list[ImageVolume]) list[ImageVolume][source]#
- Resize a SimpleITK volume to a normalized spacing, and interpolate to get right amount of voxels. Have a look at [this](https://stackoverflow.com/questions/48065117/simpleitk-resize-images) link to see potential problems. - Parameters:
- volumes -- the volumes to resize 
- n_spacing -- the normalized spacing to set 
 
- Returns:
- the resized volume